Membrane domain structures of three classes of histidine kinase receptors by cell-free expression and rapid NMR analysis.

نویسندگان

  • Innokentiy Maslennikov
  • Christian Klammt
  • Eunha Hwang
  • Georgia Kefala
  • Mizuki Okamura
  • Luis Esquivies
  • Karsten Mörs
  • Clemens Glaubitz
  • Witek Kwiatkowski
  • Young Ho Jeon
  • Senyon Choe
چکیده

NMR structural studies of membrane proteins (MP) are hampered by complications in MP expression, technical difficulties associated with the slow process of NMR spectral peak assignment, and limited distance information obtainable for transmembrane (TM) helices. To overcome the inherent challenges in the determination of MP structures, we have developed a rapid and cost-efficient strategy that combines cell-free (CF) protein synthesis, optimized combinatorial dual-isotope labeling for nearly instant resonance assignment, and fast acquisition of long-distance information using paramagnetic probes. Here we report three backbone structures for the TM domains of the three classes of Escherichia coli histidine kinase receptors (HKRs). The ArcB and QseC TM domains are both two-helical motifs, whereas the KdpD TM domain comprises a four-helical bundle with shorter second and third helices. The interhelical distances (up to 12 A) reveal weak interactions within the TM domains of all three receptors. Determined consecutively within 8 months, these structures offer insight into the abundant and underrepresented in the Protein Data Bank class of 2-4 TM crossers and demonstrate the efficiency of our CF combinatorial dual-labeling strategy, which can be applied to solve MP structures in high numbers and at a high speed. Our results greatly expand the current knowledge of HKR structure, opening the doors to studies on their widespread and pharmaceutically important bacterial signaling mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-31: Mifepristone Acts as Progesterone Antagonistof Non-Genomic Responses but InhibitsPhytohemagglutinin Induced Proliferationin Human T Cells

Background: Progesterone is an endogenous immunomodulator that suppresses T cell activation during pregnancy. The stimulation of membrane progesterone receptors (mPRs) would seem to be the cause of rapid non-genomic responses in human peripheral T cells, such as an elevation of intracellular calcium ([Ca2+] i) and decreased intracellular pH (pHi). Mifepristoneimmune cells compared with progeste...

متن کامل

Design and Production of Recombinant TAT Protein Structure, Catalytic Domain of Diphtheria Toxin, and Evaluation of Its Effect on Cell Line

Background and Objectives: Cancer is one of the most deadly diseases in the present age and its conventional therapies have had low success. Toxin therapy of cancer is a new therapeutic approach, which has attracted the attention of pharmaceutical specialists. Diphtheria toxin consists of three functional, transducing, and binding domains, that the functional part inhibits protein synthesis and...

متن کامل

P-171: Expression of Vascular Endothelial Growth Factor Receptors In Endometriosis

Background: Endometriosis is a disease which is defined by the growth of endometrium-like tissue outside of the uterine cavity. Literatures show that VEGF by interaction with their receptors, Flt-1 (Fms-like tyrosine kinase-1 or VEGFR-1) and Flk-1/KDR (fetal liver kinase/ kinase-insert domain receptor or VEGFR-2) is related to pathogenesis of endometriosis. The purpose of this study was to eval...

متن کامل

Mechanism of transmembrane signaling by sensor histidine kinases.

One of the major and essential classes of transmembrane (TM) receptors, present in all domains of life, is sensor histidine kinases, parts of two-component signaling systems (TCSs). The structural mechanisms of TM signaling by these sensors are poorly understood. We present crystal structures of the periplasmic sensor domain, the TM domain, and the cytoplasmic HAMP domain of the Escherichia col...

متن کامل

The effect of progesterone treatment after ovarian induction on endometrial VEGF gene expression and its receptors in mice at pre-implatation time

Objective(s): Progestrone is a prequisite for pre-implantation angiogenesis and induce decidual angiogenesis. It is unknown the effect of progestrone administration on the endometrium of hyperstimulated mice at pre-implantation time. Material and Methods: Adult female NMRI mice were divided in three groups [control group, ovarian stimulated group and progestrone treated mice after ovarian stimu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 24  شماره 

صفحات  -

تاریخ انتشار 2010